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1 Introduction

The idea that large N gauge theories may have a string theory description was proposed a

long time ago [1], but the first concrete proposal was given by Maldacena with the conjec-

tured AdS/CFT correspondence [2–4]. The first and most studied model was the duality

between the large N limit (where λ = g2
Y MN is kept fixed), maximally supersymmetric,

N = 4 Yang Mills theory in four dimensions with gauge group SU(N), and type IIB su-

pergravity on AdS5 × S5 with N units of RR 5-form flux through S5. The duality is so

useful as the radius of curvature R of the AdS5 space, and the ’t Hooft coupling λ, are

related through λ = R4/l4str, where lstr is the string length. When the curvature radius

R is much bigger than the length of the string, the worldsheet theory becomes classical

and can be studied. In this regime, λ approaches infinity and the dual gauge theory is

strongly coupled and not under best control, which makes the calculations on the gravity

side valuable and the correspondence useful. On the other hand, this fact makes it difficult
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to realize the concrete connection between the string theory and the gauge theory beyond

the supergravity approximation.

Work in this direction was made in [5], where certain gauge theory operators with large

R-symmetry charge was proposed to be dual to all type IIB string states in a RR-charged

pp-wave background [6], which is a Penrose limit of AdS5 × S5 [7]. A generalization came

in [8], where with the use of classical solitons and an appropriate quantization of the string

theory, it has been shown that there are some semiclassical limits where the string/gauge

duality can be reliable. For short strings, where one can approximate AdS5 by a flat

metric near the center, the leading closed string trajectory is reproduced. On the other

hand for long strings, the strings feel the metric near the boundary of AdS, and reproduce

the logarithmic behavior of the scaling of the wavefunction renormalization and hence the

anomalous dimension for operators with ”dimension minus spin” equal to two. Based on

this work, a further generalization was made by considering multi-spin string states [9, 10].

At this time, many papers were published with the aim of finding new close string solutions,

for example see [11] and references inside.

Another significant step was the identification of the one loop scalar dilatation operator

with the Hamiltonian of integrable SO(6) spin chains [12]. This has brought impressive

quantitative agreements between the energy of certain string solutions and the anomalous

dimensions for very long operators [13]. Almost one year later, it was shown [14] that the

spin chain in a certain subsector, in the limit of a large number of sites, can be described

by a sigma model which agrees with the sigma model obtained from the rotating string in

the appropriate limit.

All these results lead to further study with the aim to extend the above analysis to non-

conformal theories or conformal theories with less supersymmetries. Here we concentrate

on the latter and mention briefly that a famous effort in this direction was made possible

with the use of the Leigh-Strassler [15] marginal deformation. Lunin and Maldacena,

using a special case of this deformation on the original gauge/gravity duality, and taking

advantage of the global U(1) × U(1) symmetry that the deformed theory and background

should respect, found a new duality between N = 1 super Yang-Mills theory and a deformed

background [16]. This development gave new grounds for further testing and analyzing the

AdS/CFT duality. Some characteristic examples including instantons, mesons, gravitons,

Wilson loop calculations are in [17]. Equally important was the extension of the duality by

Frolov [18] to non-supersymmetric theories. In some cases this made it possible to examine

whether or not certain properties of field theories are related to supersymmetry [19].

Another famous gauge/gravity correspondence for theories with less supersymmetries,

is with the use of a class of backgrounds with at least N = 1 supersymmetry, which are

type IIB and with the form AdS5 × X5, where X5 is a Sasaki-Einstein manifold and are

dual to superconformal gauge theories called quivers.

A Sasakian manifold is a Riemannian manifold whose metric cone is Kähler. A Kähler

manifold is a Hermitean manifold (M, g), say of dimension m, whose Kähler form Ω,

defined by

Ωp(X, Y ) = gp(JpX, Y ) X, Y ∈ TpM, (1.1)

– 2 –



J
H
E
P
1
0
(
2
0
0
9
)
0
8
7

where Jp is the almost complex structure, it is closed. This form can be used to prove that

a complex manifold is orientable, since the real 2m form Ω∧ . . .∧Ω vanishes nowhere and it

serves as a volume element. Additionally, if the manifold M is compact and admits a Ricci

flat metric, then its first Chern class must vanish and the manifold is called Calabi-Yau.

The Sasaki-Einstein manifolds, are manifolds whose metric cones are Ricci flat and Kähler.

The first non-trivial example in the AdS/CFT correspondence with the use of these

manifolds was made in the case of the manifold T 1,1 [20]. Significant progress has been

made in Sasaki-Einstein backgrounds and their dual field theories, almost a year before

the Lunin-Maldacena correspondence was formulated, when it was found that for five-

dimensional Sasaki-Einstein manifolds Y , there is an infinite family of inhomogeneous

metrics on Y p,q ∼= S2 ×S3, which is characterized by relatively prime positive integers p, q

with 0 < q < p [21–23]. In this case, there is an effective action of a torus T 3 ∼= U(1)3 on the

C(Y p,q) which preserves the symplectic form on it and the metric, since it is an isometry.

In [24] there is an extensive discussion on the geometric features of these manifolds and in

a paper [25] that followed some days after, the superconformal quiver gauge theories dual

to type IIB string theory on AdS5 × Y p,q was proposed.

The spaces Y p,q are of cohomogeneity one, but the correspondence can be generalized

to spaces with cohomogeneity two, called Lp,q,r spaces [26]. These are characterized by the

relative positive coprime integers p, q and r with 0 < p ≤ q, 0 < r < p + q and with p, q to

be coprime to s = p + q − r and have isometry U(1) × U(1) × U(1). The metrics Y p,q are

a special case of Lp,q,r where p + q = 2r.

Moreover, like all theories with at least a U(1)×U(1) global symmetry, the toric quiver

gauge theories and their gravity dual theories admit β deformations [27], which also give

space for further analysis. The gravity dual backgrounds can be found by performing a

TsT (T-duality, ’shift’ where the parameter of deformation enter, T-duality) transformation

involving two of the angles that parametrize the U(1) directions [18], or by using the T-

duality group [28]. An extended discussion for β-deformed Sasaki-Einstein dualities is

presented in [29], where giant gravitons are also analyzed.

Therefore, it is obvious that there is an extensive attempt to extend and understand

better the AdS/CFT correspondence using theories other than N = 4 supersymmetric

Yang-Mills. In this paper we investigate semi-classical string solutions in general Y p,q

and Lp,q,r manifolds. Work in this direction has been done for the very special case of

AdS5 ×T 1,1 examined in [30–32]. Moreover,a study for the case of BPS massless geodesics

and their dual long BPS operators has been done in [34] for Y p,q manifolds and in [35]

for Lp,q,r. Dual giant gravitons have been studied in [33] and recently giant magnons and

spiky strings moving in a sector of AdS5 × T 1,1 have been examined in [36].

In this paper we mainly work on the gravity side and examine the motion of the string

along some U(1) directions in Sasaki-Einstein spaces which is localized at ρ = 0 in the AdS

space. We will see that in some cases it is difficult to find acceptable string solutions, due

to the constraints imposed on the Sasaki-Einstein parameters. For the solutions we find,

we present the energy-spin relation. The energy expressed in the momenta depends on the

manifold considered i.e. on p, q, r, We also present an extensive discussion on point-like

BPS string solutions. Notice that we do not examine the string dynamics in AdS5 which are
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identical to the maximally supersymmetric case, since all the equations can be decoupled.

2 The backgrounds

2.1 Y p,q metrics

The Sasaki-Einstein metrics Y p,q on S2×S3 can be presented in the following local form [22]:

ds2 =
1 − cy

6
(dθ2 + sin2 θdφ2) +

1

w(y)q(y)
dy2 +

q(y)

9
(dψ − cos θdφ)2

+w(y) [dα + f(y)(dψ − cos θdφ)]2 , (2.1)

or more compactly

ds2 = ds2(B) + w(y)[dα + A]2, (2.2)

where

w(y) =
2(a − y2)

1 − cy
,

q(y) =
a − 3y2 + 2cy3

a − y2
,

f(y) =
ac − 2y + y2c

6(a − y2)
. (2.3)

For c = 0 the metric takes the local form of the standard homogeneous metric on T 1,1.

Generally we can scale the constant c to 1 by a diffeomorphism, and this is what we do in

the rest of the paper.

To make the space B a smooth complete compact manifold we should fix the coordi-

nates appropriately [22]. The parameter a is restricted to the range

0 < a < 1 . (2.4)

To make the base B4 an axially squashed S2 bundle over the round S2 one can choose

the ranges of the coordinates (θ, φ, y, ψ) to be 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, y1 ≤ y ≤ y2 and

0 ≤ ψ ≤ 2π. The parameter ψ is the azimuthal coordinate on the axially squashed S2

fibre and the round sphere S2 parametrized by (θ, φ). Also, by choosing the above range

for a, the following conditions of y are satisfied: y2 < a, w(y) > 0 and q(y) ≥ 0. The

equation q(y) = 0 is cubic and has three real roots, one negative and two positive. Naming

the negative root yq− and the smallest positive root yq+ we must choose the range of the

coordinate y to be

yq− ≤ y ≤ yq+ , (2.5)

with the boundaries corresponding to the south and north poles of the axially squashed

S2 fibre. Also, it is necessary to have p/q rational in order to have a complete manifold.

Note that

yq+ − yq− =
3q

2p
≡ ξ , (2.6)
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where ξ is defined for later use. Therefore, if the roots yq+, yq− are rational we speak

for quasi-regular Sasaki-Einstein manifolds with the property that the volume of these

manifolds having a rational relation to the volume of the S5. However the rationality of

p/q can be achieved even in cases that the two roots are irrational which gives irregular

Sasaki-Einstein metrics.

Using the expressions (A.1) presented in the appendix A, we can express yq− in terms

of ξ

yq− =
1

2

(

1 − ξ −
√

1 − ξ2

3

)

, (2.7)

where 0 < ξ <
√

3. Since yq− is the root of the cubic, a can be expressed in terms of ξ

a =
1

18

(

9 − 3
√

9 − 3ξ2 + 4ξ2
√

9 − 3ξ2
)

, (2.8)

and in order to ensure that yq+ is the smallest positive root we constrain ξ to the range

0 < ξ < 3/2. If we prefer, we can express a in terms of p, q using (2.6)

a =
1

2
− p2 − 3q2

4p3

√

4p2 − 3q2 , (2.9)

then the period of α is given by 2πl where

l =
q

3q2 − 2p2 + p(4p2 − 3q2)1/2
. (2.10)

2.2 Lp,q,r metrics

The metric of this manifold is [26]

ds2
p,q,r = (dξ + σ)2 + ds2

[4] , (2.11)

where

ds2
[4] =

ρ2

4∆(x)
dx2 +

ρ2

h(θ)
dθ2 +

∆(x)

ρ2

(

sin2 θ

α
dφ +

cos2 θ

β
dψ

)2

(2.12)

+
h(θ) sin2 θ cos2 θ

ρ2

(

α − x

α
dφ − β − x

β
dψ

)2

(2.13)

and

σ =
(α − x) sin2 θ

α
dφ +

(β − x) cos2 θ

β
dψ , (2.14)

∆(x) = x(α − x)(β − x) − µ , (2.15)

ρ2 = h(θ) − x , (2.16)

h(θ) = α cos2 θ + β sin2 θ . (2.17)

Here p, q and r are relative positive coprime integers and 0 < p ≤ q, 0 < r < p + q and

p, q are coprime to s = p+ q− r. The metrics depends on two non-trivial parameters since
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α, β, µ are constants, and we can set one of them equal to a non-zero number by rescaling

the other two and x. The function ∆(x) plays a similar role to the function f(y) in the

Y p,q manifold, so x should be restricted between the two lowest roots of ∆(x) = 0, namely

x1 and x2, where

x1 < x < x2 . (2.18)

Moreover, in order to have a smooth geometry in 5 dimensions the parameters should

satisfy α, β ≥ x2 where x2 ≥ x1 ≥ 0, which imply the already presented inequalities for

p, q, r. The constants appearing in the metric are related to the roots of ∆(x) as follows:

µ = x1x2x3, α + β = x1 + x2 + x3, αβ = x1x2 + x1x3 + x2x3, (2.19)

where x3 is the other root of ∆(x).

The metrics (2.1) of Y p,q can be derived as a special case of Lp,q,r when p + q = 2r,

which implies α = β. The coordinate transformation is

ξ̄ = −2α, φ̄ =
ψ + φ

2
+ 3α, ψ̄ =

ψ − φ

2
+ 3α, θ̄ =

θ

2
, x̄ =

(2y + 1)ᾱ

3
, (2.20)

with µ related to a by

µ̄ =
4

27
(1 − a)ᾱ3 , (2.21)

where we redefine the coordinates and the constants of Lp,q,r using bars, in order to dis-

tinguish them from the ones of Y p,q.

We also present the metric of AdS5 in the Hopf coordinate system although we will be

using the time element only

ds2 = − cosh2 ρdt2 + dρ2 + sinh2 ρ(dβ2
1 + cos2 β1dβ2

2 + sin2 β1dβ2
3) , (2.22)

where the ranges of the angles are 0 ≤ β1 ≤ π/2, 0 ≤ β2, β3 ≤ 2π.

3 String solutions in Y
p,q background

3.1 Equations of motion and conserved quantities

In this section we present some spinning string solutions in the Y p,q manifold. We will

fix the angle θ and hence are allowing the string to move on a circle of the round sphere

S2 parametrized by the coordinate φ. On the squashed sphere the string can move on its

azimuthal coordinate ψ, and sit at a constant value y0 between the north and south poles.

This value will be chosen carefully by solving the equations of motion. Finally, the string

can move on the principle S1 bundle over B parametrized by α. Notice that each of the

directions that the string is allowed to spin has a U(1) symmetry. As usual the global time

is expressed through the world-sheet time as t = κτ , and the string is localized at the point

– 6 –
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ρ = 0. The Polyakov action in the conformal gauge is given by

S = −
√

λ

4π

∫

dτdσ

[

− (−ṫ2 + t′2) +
1 − y

6
(−θ̇2 + θ′2) +

1

wq
(−ẏ2 + y′2)

+

(

1 − y

6
s2
θ +

q

9
c2
θ + wf2c2

θ

)

(−φ̇2 + φ′2) +
(q

9
+ wf2

)

(−ψ̇2 + ψ′2) + w(−α̇2 + α′2)

−2cθ

(q

9
+ wf2

)

(−ψ̇φ̇ + ψ′φ′) + 2wf(−α̇ψ̇ + α′ψ′) − 2wfcθ(−α̇φ̇ + α′φ′)

]

.

For convenience we do not write explicitly the dependence of y in the functions f, w and

q. The classical equations of motion for constant θ and y take the form

1 − y

6
(−φ̇2 + φ′2)s2θ +

(q

9
+ wf2

) (

s2θ(φ̇
2 − φ′2) + 2sθ(−ψ̇φ̇ + ψ′φ′)

)

+2wfsθ(−α̇φ̇ + α′φ′) = 0 , (3.1)

s2
θ

6
(φ̇2 − φ′2) +

(

Q

9
+ A1

)

(

c2
θ(−φ̇2 + φ′2) − ψ̇2 + ψ′2 − 2cθ(−ψ̇φ̇ + ψ′φ′)

)

+W (−α̇2 + α′2) + 2A3(−α̇ψ̇ + α′ψ′ − cθ(−α̇φ̇ + a′φ′)
)

= 0 , (3.2)

∂β

[

γβδ (w∂δα + wf(∂δψ − cθ∂δφ))
]

= 0 , (3.3)

∂β

[

γβδ

(

1 − y

6
s2
θ∂δφ +

(q

9
+ wf2

)

(c2
θ∂δφ − cθ∂δψ) − wfcθ∂δa

)]

= 0 , (3.4)

∂β

[

γβδ
((q

9
+ wf2

)

(∂δψ − cθ∂δφ) + wf∂δα
)]

= 0 , (3.5)

where we have used the conventions

A1 ≡ ∂y(wf2), A2 ≡ ∂y((wq)−1), A3 ≡ ∂y(wf), Q ≡ ∂yq, W ≡ ∂yw (3.6)

and we have written the three last equations in a more compact form since for the ansatze

we will choose they are satisfied trivially. In addition to the above equations, we get two

more which come from the variation of the action with respect to the worldsheet metric.

These are equivalent to the components of the energy-momentum tensor being set to zero.

The Virasoro constraints read

1 − y

6
s2
θφ̇φ′ +

(q

9
+ wf2

) (

c2
θφ̇φ′ + ψ̇ψ′ − cθ(φ̇ψ′ + ψ̇φ′)

)

+ wα̇α′

+wf
(

α̇ψ′ + ψ̇α′ − (α̇φ′ + φ̇α′)cθ

)

= 0, (3.7)

−κ2 +
1 − y

6
s2
θ(φ̇

2 + φ′2) + w(α̇2 + α′2) + 2wf
(

α̇ψ̇ + α′ψ′ − (α̇φ̇ + α′φ′)cθ

)

+
(q

9
+ wf2

) (

c2
θ(φ̇

2 + φ′2) + ψ̇2 + ψ′2 − 2cθ(φ̇ψ̇ + φ′ψ′)
)

+
1 − y

6
(θ̇2 + θ′2) +

1

wq
(ẏ2 + y′2) = 0, (3.8)

where only in the last equation (3.8) we include the terms corresponding to a non-constant

θ and y for later use in section 3.2.
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The symmetry of Y p,q admits three conserved charges which are the angular momenta

corresponding to strings rotating along the α, φ and ψ directions. Moreover, there exists

one more conserved quantity, the classical energy, which is generated by the translational

invariance along t. All of them are presented below:

E =

√
λ

2π

∫ 2π

0
dσ κ , (3.9)

Ja =

√
λ

2π

∫ 2π

0
dσ (wȧ − wfcθφ̇ + wfψ̇) , (3.10)

Jφ =

√
λ

2π

∫ 2π

0
dσ

(

−wfcθȧ +

(

1 − y

6
s2
θ +

q

9
c2
θ + wf2c2

θ

)

φ̇ −
(q

9
+ wf2

)

cθψ̇

)

, (3.11)

Jψ =

√
λ

2π

∫ 2π

0
dσ

(

wfȧ −
(q

9
+ wf2

)

cθφ̇ +
(q

9
+ wf2

)

ψ̇
)

. (3.12)

Let us also define the new quantities Jtot = Jα + Jφ + Jψ, E = E/
√

λ, Ji = Ji/
√

λ and

Jtot = Jtot/
√

λ for later use. The conserved quantity corresponding to the total SU(2)

angular momentum is

J2 = J2
θ +

1

s2
θ

(Jφ + cθJψ)2 + J2
ψ . (3.13)

Finally, for point-like stings localized at constant points on θ and y, the following iden-

tity holds √
λ κ2 = α̇Jα + φ̇Jφ + ψ̇Jψ . (3.14)

In the following we will choose an ansatz where the string is moving in Y p,q along the three

angles α, φ, ψ and is at rest along all the other directions

α = ω1τ + m1σ, φ = ω2τ + m2σ, ψ = ω3τ + m3σ , (3.15)

θ = θ0 and y = y0, (3.16)

where θ0, y0 are constants and their exact values should be chosen to be consistent with

the solutions of the equations of motion and the Virasoro constraints. Notice also, that

due to the periodicity condition in the global coordinates of the manifold on σ, the winding

numbers have to be integers. For the linear dependence on τ, σ of (3.15), the equations of

motion (3.3), (3.4) and (3.5) for α, φ and ψ respectively, are trivially satisfied.

3.2 Discussion on BPS solutions

In this section we discuss the BPS point-like solutions. The R-symmetry in the field

theory is dual to the canonically defined Reeb Killing vector field K on the Sasaki-Einstein

manifolds [24, 25], given by

K = 3
∂

∂ψ
− 1

2

∂

∂α
(3.17)

and the R-charge is equal to

QR = 2Jψ − 1

3
Jα . (3.18)
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Now in order to express the Hamiltonian in terms of the momenta, we are initially consid-

ering a general situation, where all the parameters in the internal manifold are dependent

on τ :

θ = θ(τ), y = y(τ), α = α(τ), φ = φ(τ), ψ = ψ(τ), (3.19)

and later we will focus on the string configurations mentioned in the previous section. The

reason we are doing this, is to show how the general BPS solutions behave if we generalize

our ansatz and activate simultaneously the motion on all angles. The process is equivalent

to finding massless geodesics and is examined in [33, 34].

We start by expressing the energy in terms of the momenta. Now since we consider

motion on the θ and y coordinates, we have the-non zero conjugate momenta

Jy =

√
λ

2π

∫ 2π

0
dσ

1

w q
ẏ , Jθ =

√
λ

2π

∫ 2π

0
dσ

1 − y

6
θ̇ . (3.20)

It is straightforward to substitute in the second Virasoro constraint the velocities in terms

of their momenta and get

κ2 =
1

λ

(

w q J2
y +

6

1 − y
(J2 − J2

ψ) +
1

w
J2

α +
9

q
(Jψ − fJα)2

)

. (3.21)

The energy of the string is given by (3.9), and is equal to the conformal dimension ∆ of

the dual operator, and to find the lower bound of it, we should express (3.21) in terms of

the R-charge. Using (3.18), we obtain via the algebra in (3.21):

∆2 =

(

3

2
QR

)2

+
1

wq
(Ja + 3yQR)2 + wqJ2

y +
6

1 − y
(J2 − J2

ψ) . (3.22)

Since yq+ < 1, which is the upper bound of y, and J2 ≥ J2
ψ, all the terms in the above

equation are positive, which leads to the inequality ∆ ≥ 3/2 QR. The solutions generated

by the equality correspond to BPS operators, and in order to saturate the bound, all the

following equations must be satisfied

Jy = 0, Jθ = 0, Jφ = −cθJψ, Jα = −3yQR. (3.23)

The two first equations fix θ and y to unknown constants. The next two can be used to

determine the relationship between α, φ, ψ using the constants y, θ. The situation now is

getting closer to our initial configuration in the previous section where we considered y, θ

as constant, with the difference that the τ dependence of the U(1) angles is now unknown,

and needs to be determined by the equations of motion and the Virasoro constraints. In

order to find BPS solutions we need to solve the equations of motion (24-28) together

with (3.23) and use (3.8) to calculate the energy. The first Virasoro constraint (3.7) is

trivially satisfied.

It is more convenient to proceed by solving first the equations (3.3), (3.4) and (3.5) for

constant y and θ, since their solutions are very special. As we said above, these equations

are satisfied trivially for angles with linear dependence on τ , i.e. the one written in (3.15)
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where for the point-like case is equivalent to set all the mi zero. The rest of the solutions

we get constrain y to live on its maximum or minimum values, which means on the poles

of the squashed sphere. More specifically the solutions are

α = ω1τ, φ = ω2τ, ψ = ω3τ or (3.24)

y = yq±, φ = ω2τ, α̈ =
1 − y

6y
ψ̈. (3.25)

However, when we take account of the boundary conditions in (3.25), we see that ψ̇ = 0,

since we are at the poles of the squashed sphere. This fixes ψ to be constant and the other

two U(1) angles to have linear dependence on τ . This makes (3.25) a special case of (3.24).

So the only way to satisfy the above equations for the non-constant angles is to have a

linear dependence on τ , where the θ and y are not yet fixed to a specific value.

Bearing the above results in mind, we proceed by finding general solutions that satisfy

the two first equations of motion (3.1), (3.2), together with the BPS equations (3.23) and

present some solutions, starting with a solution which was also found in [34]

φ̇ = 0, α̇ = − ψ̇

6
. (3.26)

We see that this solution is valid for any y that satisfies the inequality (2.5), since in this

case, the last equation of (3.23) is satisfied trivially. Additionally, the third equation in

(3.23) is satisfied also trivially and hence θ can take any constant value inside the region

where it is defined. However notice that in order for the solution to satisfy (26-28), the α

and ψ angles must have a linear dependence on τ , and hence

α = −ω3

6
τ, ψ = ω3τ. (3.27)

The energy for this solution is equal to E =
√

λ|ψ̇|/3 and the conserved momenta in this

case are

Jα = −2

3

√
λyψ̇, Jφ =

1

9

√
λ(y − 1)cθψ̇, Jψ = −1

9

√
λ(y − 1)ψ̇ (3.28)

and are related each other by

Jφ = −cθ Jψ =
1 − y

6y
cθ Jα . (3.29)

In this case the energy can be written as

E =
3

|(y − 1)(cθ − 1) − 6y| |Jtot| . (3.30)

Notice that in the above relation the factor of proportionality is independent of a, and

hence on the manifold considered.

Another set of possible solutions different than (3.27) are:

θ = 0, y = 1 ±
√

1 − a√
3

, α̇ =
φ̇ − ψ̇

6
, (3.31)
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where again α, φ, ψ have to be linear with τ in order for the above expressions to satisfy

(3.3), (3.4) and (3.5). The y solution is a special case of (3.33) for θ = 0 and as we show in

the next section, it is unfortunately always greater than yq+ except in the limit y = yq+ = 1.

This is the case where a = 1 and we are not going to examine it any further. However,

to be more accurate here, we have to set φ̇ = 0, since for θ = 0 we are on the pole of S2

and there is no meaning in defining rotation along φ direction. Hence, the corresponding

equation in (3.31) should be modified to α̇ = −ψ̇/6.

More interesting are the following solutions where y lives on its boundaries

y = yq±, θ = 0, φ̇ = 0, α̇ = −y + 2

6y
ψ̇, (3.32)

and the dependencies of the non-constant angles on τ are linear. This solution is acceptable

since the inequality (2.5) is satisfied. However, by considering the boundary conditions,

the solution become trivial, since we are on the poles of the squashed sphere where rotation

along the ψ direction cannot be defined. Hence, we have to impose ψ̇ = 0 and then the

whole string ansatz becomes static.

One could possibly find, other non-interesting solutions at the limits a = 0, 1, but

it seems that there are no other BPS solutions than the ones presented above, which

allow a to be at other points except zero and one. The solution (3.32) has as its main

property to restrict y to the boundaries of (2.5) and to localise the string on the two

three-submanifolds obtained by the initial manifold for y = yq±, and denoted by Σ−
∼=

S3/Zp+q, Σ+
∼= S3/Zp+q. The cones over these Lens spaces are divisors of C(Y p,q) and

hence supersymmetric submanifolds [24]. This is because the induced volume form on Σ is

equal to the four-form J ≡ J ∧ J/2 , where J here is the Kähler symplectic form. Hence,

these cones are calibrated with respect to J .

In the following sections, non-BPS point-like, as well as extended string solutions, will

be examined.

3.3 One angle solution

In this section we examine the simplest case, where only the angle which parametrizes some

U(1) direction of the manifold in this coordinate system is turned on. In this case it is

known that classical spinning string solutions that wrap around the circle do not exist due

to diffeomorphism invariance, or equivalently because the first Virasoro constraint forces

the metric element in the spinning direction to vanish,1 or make the string ansatz trivial. In

Y p,q manifolds however, we just mention, that the diagonal metric elements in these three

Killing vector directions can not vanish for y in the range (2.5) and hence the Virasoro

constraints force the ansatz in that case to become static. Let us show briefly that the

diagonal metric elements in the U(1) directions can not vanish.

For the gαα, this is obvious since it is equal to zero for y = ±√
a and we already

know that these values do not satisfy (2.5). For the gφφ element, the situation is more

1Which conceptually does not look right since we consider motion along this direction only.
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Figure 1. We plot y± = 1 ±
√

1 − ac2
θ/
√

3 together with the yq+
, yq− versus a, θ. The yq

−

, yq+

surfaces are colored red and green respectively, while y−, y+ colored blue and orange respectively.

From the figure we notice that both y± are greater than yq+ for the whole range of a and θ.

complicated since it is equal to zero for

y± = 1 ±
√

1 − ac2
θ√

3
. (3.33)

Obviously the y+ solution is discarded since is bigger than one, but also the y− solution is

outside the desirable area as can be seen in figure 1. The last diagonal metric element gψψ

is zero for y± = 1 ±
√

1 − a/
√

3, where y− is the lower bound of the previous solution and

obviously this metric element cannot be zero too.

Let us now begin by looking for point-like string solutions. By allowing the string

to move only along the α direction, and using the ansatz α = ω1t, the only non-trivially

satisfied equation that we need to solve is (3.2), which takes the simple form:
(

2 − 2(a − 1)

(y − 1)2

)

ω2
1 = 0 , (3.34)

and has solutions

y± = 1 ±
√

1 − a . (3.35)

These solutions are plotted with the yq± (figure 2), and it is obvious that only y− is an

acceptable solution, since yq− ≤ y− ≤ yq+ for the whole range of a. Then, for y = y− the

second Virasoro constraint (3.8) gives

κ2 = w ω2
1 ⇒ κ2 = 4

(

1 −
√

1 − a
)

ω2
1 . (3.36)

Then using (3.9) - (3.12), we get for energy and the non zero conserved charges

E =
√

λ
√

w ω2
1 , (3.37)

Jα =
√

λ w ω1 . (3.38)
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y

Figure 2. Plotting the roots y (blue) of (3.35) with yq− (red), yq+ (green) versus a. This color

mapping to the solution will be the same in the other plots too. In the first plot we see that the

smaller solution y− is between the two roots of q(y) = 0 and in the second one that the greater root

y+ is outside the allowed area since y+ > 1.

Combining the above relations we end up with

E =

√

1

w
J2

α ⇒ E =

√
λ

2

√

1

1 −
√

1 − a
J 2

α . (3.39)

Note that the energy depends linearly on Jα = Jtot and depends on the manifold Y p,q,

since a is related to p, q by the equation (2.8), with the factor of proportionality being

a monotonically decreasing function with respect to a. On the other hand, the function

of the energy in terms of a, ω1 is a monotonically increasing function with respect to a

as can be seen from (3.36). As a final remark, we mention that all the calculations are

independent of the angle θ, which can be chosen as any constant angle.

For completeness we now can consider a static string along the α direction with α =

m1σ. The solution of the equation of motion remains the same, given by (3.35). The only

difference is that all the momenta are now equal to zero and the energy is expressed as

κ2 = wm2
1 ⇒ E = 2

√
λ

√

(

1 −
√

1 − a
)

m2
1 . (3.40)

Following a similar procedure we choose a different angle φ with a similar ansatz and

consider a point-like string motion with φ = ω2t. Then, the non-trivial equations are (3.1)

and (3.2), which take the form

(a − 1)s2θ

18(y − 1)
ω2

2 = 0 , (3.41)

a − 7 − 6(y − 2)y + (a − 1)c2θ

36(y − 1)2
ω2

2 = 0 , (3.42)

and do not give any new real solution, since the first equation is solved for θ = nπ/2, n =

(0, 1, 2) and the second one can not be solved for real y. The situation is similar when we

choose the static string ansatz φ = m2σ, where the above equations remain the same with

ω2 replaced by m2, and obviously again they do not give any new solutions.
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Finally, for the third angle which parametrizes the remaining U(1) direction, again

consider the string ansatz ψ = ω3t. The only non-trivial equation of motion is (3.2)

a − 4 − 3(y − 2)y

18(y − 1)2
ω2

3 = 0 , (3.43)

which has solutions y = 1 ±
√
−1 + a/

√
3 and are not real. The situation is similar for

the ansatz ψ = m3σ, since the equation (3.43) remains the same, with only difference the

replacement of ω3 by m3.

Summarizing, if we restrict the string to rotate or wrap only along one U(1) direction

in Y p,q as we have done above, there is only one possible configuration. It is the point-like

string moving along the fibre direction α = ω1τ . This is one spin solution, where the

energy is proportional to Jα and depends on the manifold Y p,q in a way that the factor of

proportionality is a decreasing function of a.

We expect that the solution (3.35) is not BPS. More specifically the Hamiltonian here is

H =
√

λ
1

2
wω2

1 = 2
√

λ
(

1 −
√

1 − a
)

ω2
1 . (3.44)

Hence the R-charge and the conformal dimension of the dual operator can be written as

QR = −
√

λ

3
wω1, ∆2 =

(

3

2
QR

)2

+ λ(4a − w)ω2
1 =

(

3

2
QR

)2

+

√
1 − a

4(1 −
√

1 − a)
J2

α .

It is obvious that ∆ > 3/2 QR always, since the expression (4a−w) is always positive, and

become equal to zero only in the limits a = 0, 1. Hence, the solution is non-BPS.

3.4 The two angle solutions

Here we examine some solutions where the strings are moving along two U(1) directions. We

are looking for possible string solutions, with motion along the directions α, ψ, motivated

by the fact that motion in these directions gives one BPS solution. Considering point-like

strings and the simple ansatz2

α = ω1τ, ψ = ω3τ, (3.45)

we get only one non-trivial equation (3.2). This is solved by

y± = 1 ±
√

(1 − a)(2ω1 − ω3)(6ω1 + ω3)√
3(2ω1 − ω3)

, or (3.46)

ω1 = −ω3

6
.

We do not examine solutions in the limits a = 0, 1 and in the rest of the analysis we

will ignore solutions that are valid only there. The solution ω1 = −ω3/6 is BPS and is

examined in a previous section. The other solution for y, is acceptable in a region which

will be specified. Notice, that for

ω1 = −y + 2

6y
ω3 , (3.47)

2Whenever we are writing an ansatz we suppose that all the parameters ωi, mi are non-zero.
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Figure 3. We plot y± versus n, a where ω1 = nω3 with n > 1/2. In the first plot with y+ we

clearly see that there is no acceptable solution. In the second plot, the y− give acceptable solutions.

which is the solution derived in (3.32), the solution (3.46) for y becomes BPS and lives on

y = yq±, but by considering the boundary conditions becomes static.

For the general case, first of all, one must find the values for which the square root is

real and these are for

ω3 > 0, ω1 >
ω3

2
or ω1 < −ω3

6
(3.48)

ω3 < 0, ω1 <
ω3

2
or ω1 > −ω3

6
. (3.49)

Then we can see that indeed there exists solutions of y that are between yq− and yq+.

Actually, the two solutions of (3.46) are equivalent depending on the sign of numbers

ω1, ω3, i.e. if they are positive or negative. What one can say directly, is that the solution

for y with r.h.s. equal to ’one minus a positive quantity’, is the one that could be acceptable

in some intervals. In order keep the presentation simpler we choose ω1, ω3 > 0. To give a

visual picture of how the solutions behave we plot the surfaces for some random relation

between ω1, ω3, say ω1 = n ω3 in figure 3.

We see that y− is an acceptable solution for

a >
4(7 + 18n)

(1 + 6n)3
, (3.50)

which also implies n > 1/2 in order for a to be smaller than 1.

For the general case, the equation (3.8) gives

κ2 = 4ω2
1 − (6ω1 + ω3)

√

(1 − a)(2ω1 − ω3)(6ω1 + ω3)

3
√

3
, (3.51)

where we have substituted the solution y.
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The conserved charges for our solution, given from (3.10), (3.11), (3.12) are

Jα =
√

λ

(

4ω1 +
4(−3ω1 + ω3)

3

√

(1 − a)(6ω1 + ω3)

3(2ω1 − ω3)

)

, (3.52)

Jφ = −
√

λ
ω3cθ

3

√

(1 − a)(6ω1 + ω3)

3(2ω1 − ω3)
, (3.53)

Jψ =
√

λ
ω3

3

√

(1 − a)(6ω1 + ω3)

3(2ω1 − ω3)
, (3.54)

where (3.46) used. Notice the relation Jφ = −cθJψ. It seems that the energy depends on

the momenta in a transcendental way. This is due to the complicated expression of y which

depends on ω1,3, and enters in the momenta through the functions w, q, f . On the other

hand, as we can see from (3.51), the energy is a monotonically increasing function with

respect to a when ω1, ω3 are fixed. This behavior is similar to the one angle solution we

found before, but it will be more interesting to have an energy-spin relation, which could be

found by substituting in the second Virasoro constraint the ω1,3 with two conserved charges.

To finish, let us consider the example of Y 2,1. To find the corresponding value of a we

can use (2.8) and find that

a =
1

4

(

2 −
√

13

8

)

≃ 0.387327 . (3.55)

Substituting in (3.50), we see that indeed we can get solutions for y that are inside the

desirable interval when ω1 > 0.8568 ω3, or equivalently n > 0.8568. To simplify things

even more we can choose θ = 0, and solve for ω1, ω3 in terms of Jα, Jψ to get the energy-

spin relation. The energy-spin relation looks lengthy and complicated and seems to be

completely transcendental, so we choose not to present it here.

Generalizing the ansatz by adding a σ dependence on the angle α and allowing the

string to spin along this direction, we search for string solutions using

α = ω1τ + m1σ, ψ = ω3τ. (3.56)

The non-trivial equations that needs to be solved in this case are (3.2) and (3.7). One

acceptable solution is

ω1 =
ω3

6
, y = a, a =

2ω2
3

9m2
1 + ω2

3

. (3.57)

By considering a < 1, and choosing ω1, ω3 > 0, we get |m1| > ω3/3. To satisfy the

condition (2.5), we have to restrict m1 further as

|m1| >
ω3√

3
⇒ a <

1

2
. (3.58)

Hence solutions that satisfy the above condition are acceptable as can be also seen clearly

in figure 4. To calculate the energy we use (3.8) which gives
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Figure 4. Plotting y, yq+, yq− versus ω3, m1. The transparent plane is at a = 1/2. When (3.58)

satisfied, a < 1/2 and hence our solution lives in the area between the yq+, yq−. Also notice that

for a > 1 there is no green surface, since the values of yq+ become complex, as expected.

κ2 =
(15m2

1 − ω2
3)ω

2
3

3
(

9m2
1 + ω2

3

) , (3.59)

and the corresponding charges are given by

Jα = 0, Jφ =
√

λ
cθ

(

ω2
3 − 3m2

1

)

3
(

9m2
1 + ω2

3

) ω3, Jψ =
√

λ

(

−1

3
+

4m2
1

9m2
1 + ω2

3

)

ω3. (3.60)

Before we continue, we point out that one has to check if the function of a we get

from (3.57) can give rational values to the expression yq+ − yq−. This was not done in the

previous cases since a was not dependent on ω or m, and hence it can take any appropriate

value between zero and one, which would make the subtraction of the two roots of q(y) = 0

rational. In this case, one way to solve this problem is to equate the expression for a, given

in (2.8), with our solution (3.57), and see if we can get rational solutions in the acceptable

interval for ξ. One more reason to express ω3 in terms of a is that is more preferable to

choose a manifold Y p,q, and from that to specify the allowed values for ωi, mi, instead of

proceeding in the reverse direction. Using (2.8) and (3.57), we get for ω3, m3

ω3 = ± 3
√

a√
2 − a

m1 = ±
3

√

9 +
√

9 − 3ξ2 (−3 + 4ξ2)
√

27 + (3 − 4ξ2)
√

9 − 3ξ2

m1 ≡ ±Dm1 , (3.61)

where D is defined from the above equation. We are going examine the solutions with

the plus sign which imply m1 > 0. For 0 < ξ < 3/2, the multiplicative factor satisfies

0 < D < 3, and by imposing the constraint (3.58), we are limited in the interval

ξ <

√
3

2
⇔ a <

1

2
, (3.62)

which also means that D <
√

3. The corresponding conserved charges in terms of a, m1 are

Jα = 0, Jφ = −
√

λ
(1 − 2a)

√
acθ

3
√

2 − a
m1, Jψ =

√
λ

(1 − 2a)
√

a

3
√

2 − a
m1 , (3.63)

– 17 –



J
H
E
P
1
0
(
2
0
0
9
)
0
8
7

or using ω’s

Jφ = −
√

λ
(1 − 2a)cθ

9
ω3, Jψ =

√
λ

(1 − 2a)

9
ω3 . (3.64)

The sum of the momenta is

Jtot =

√
α(2α − 1)(cos θ − 1)

3
√

2 − α
m1 . (3.65)

Finally, the relation between the charges is

Jφ = −cθJψ = − cθ

1 − cθ
Jtot . (3.66)

Notice, that the zeroth momentum Jα can follow from a more general solution such as

y = a and ω1 = ω3/6.

To find the energy, we use (3.8) to get

κ2 =
a(5 − 4a)

2 − a
m2

1 , (3.67)

which can be written in terms of ω3 by solving (3.61) for m1. As before for a fixed ω3, the

energy is a monotonically increasing function with respect to a for a < 1/2. Using (3.63),

we get the energy of our solution in terms of the momenta

E =
√

λ

√

a(5 − 4a)

2 − a
m2

1 =
3
√

5 − 4a

(1 − 2a)(1 − cθ)
Jtot . (3.68)

The angle θ is a constant, but in case we want to eliminate it, we can express cθ in terms

of the momenta from equation (3.66) and get

E =
3
√

5 − 4a

(1 − 2a)
Jψ . (3.69)

It is also interesting to insert the ξ parameters in the expressions we calculate using (3.61).

Then the energy in terms of the momenta and the rational number ξ is

E =
3
√

3

(3 − 4ξ2)(1 − cθ)

√

27 + 2(3 − 4ξ2)
√

9 − 3ξ2

3 − ξ2
Jtot . (3.70)

The equations (3.68) or (3.70) show that the energy is proportional to the momenta and

depends on a. The exact dependence of the energy multiplied by (1− cθ), in order to avoid

the dependence on the third parameter θ and to be able to plot a surface, is presented

in figure 5. We can see that the factor of proportionality between the energy and the

momenta, is monotonically increasing with respect to a. However, the form of this factor

does not seem to follow a specific pattern between the different string solutions. This

occurs mainly because y depends on ω and m in a different way for each string solution.

Also notice that the momenta are not taking continuous values but are quantized on a and

m1. Hence, the energy will not be a continuous function of the parameters, even if we plot

it as continuous in order to show its behavior.

To finish the analysis for this case we mention that there are other solutions of (3.2)

and (3.7), but these solutions are excluded since there is no a that satisfies the rationality

constraint of yq+ − yq− and at the same time gives integer winding numbers.
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Figure 5. In the first plot is the energy versus m1, a. In the second plot the expression E · (1− cθ)

is plotted versus Jtot, a, and one can notice the sharp rise of the energy as a → 1/2. The plot range

on energy is restricted intentionally to finite region in order to have a clear shape of the surface.

4 String solutions in L
p,q,r background

4.1 Equations of motion and conserved quantities

In this section we construct solutions for strings moving on the Lp,q,r manifold. The

configuration is chosen to be similar with the analysis of the Y p,q manifold. Firstly, we

choose the string to sit at a constant angle θ. In this manifold, the role of the previous y

coordinate is played by the coordinate x, and so we restrict the string to be localized at

a constant point x0, which has to respect the constraint (2.18). For some configurations,

the points θ and x that the string is sitting can be chosen arbitrary, but in most cases the

equations of the system constrain at least one of them. As for the string dynamics, we

are going to consider motion along some of the three U(1) directions and try to find the

energy-spin relation and how the energy is related on the properties of the general manifold.

Furthermore, we are not going to analyze the string dynamics in the AdS5 since these

are identical to the maximally supersymmetric case. To simplify things we are localizing

the string also at ρ = 0 on AdS5 and expressing the global time through the world-sheet

time by t = κτ . Thus, the Polyakov action in the conformal gauge is given by

S = −
√

λ

4π

∫

dτdσ

[

− (−ṫ2 + t′2) + (−ξ̇2 + ξ′2) +
ρ2

4∆
(−ẋ2 + x′2) +

+
ρ2

h
(−θ̇2 + θ′2) +

(

(α − x)2

α2
s2
θ +

∆s2
θ + hc2

θ(α − x)2

ρ2α2

)

s2
θ(−φ̇2 + φ′2) +

+

(

(β − x)2

β2
c2
θ +

∆c2
θ + hs2

θ(β − x)2

ρ2β2

)

c2
θ(−ψ̇2 + ψ′2) +

+2

(

(α − x)(β − x) +
∆ − h(α − x)(β − x)

ρ2

)

c2
θs

2
θ

αβ
(−ψ̇φ̇ + ψ′φ′) +

+2
α − x

α
s2
θ(−ξ̇φ̇ + ξ′φ′) + 2

β − x

β
c2
θ(−ξ̇ψ̇ + ξ′ψ′)

]

.

Again, we do not write the dependence of the functions on their arguments, in order to sim-

– 19 –



J
H
E
P
1
0
(
2
0
0
9
)
0
8
7

plify the presentation. Also notice that α should not be confused with the same letter used

in the case of Y p,q manifolds to name the angle. Before we start writing down the equations

of motion, we define for convenience some new quantities. We identify the three expressions

which are multiplied by (−φ̇2 + φ′2), (−ψ̇2 + ψ′2) and (−ψ̇φ̇ + ψ′φ′), in the above action,

which also correspond to metric elements, with the functions d1(x, θ) ≡ gφφ, d2(x, θ) ≡ gψψ

and d3(x, θ) ≡ gφψ respectively. The partial derivatives of these functions are presented in

appendix A, and will be used later.

The equations of motion for the θ, x are:

∂θd1(−φ̇2 + φ′2) + ∂θd2(−ψ̇2 + ψ′2) + 2∂θd3(−ψ̇φ̇ + ψ′φ′)

+2
a − x

a
s2θ(−ξ̇φ̇ + ξ′φ′) − 2

β − x

β
s2θ(−ξ̇ψ̇ + ξ′ψ′) = 0 , (4.1)

∂xd1(−φ̇2 + φ′2) + ∂xd2(−ψ̇2 + ψ′2) + 2∂xd3(−ψ̇φ̇ + ψ′φ′)

− 2

α
s2
θ(−ξ̇φ̇ + ξ′φ′) − 2

β
c2
θ(−ξ̇ψ̇ + ξ′ψ′) = 0 , (4.2)

where we have used the fact that the string is localized at two fixed points θ0, x0. The

equations of motion for the three U(1) directions φ, ψ, and ξ are

∂κ

(

γκλ

(

d1∂λφ + d3∂λψ + 2
α − x

α
s2
θ∂λξ

))

= 0 , (4.3)

∂κ

(

γκλ

(

d2∂λψ + d3∂λφ + 2
β − x

β
c2
θ∂λξ

))

= 0 , (4.4)

∂κ

(

γκλ

(

2
α − x

α
s2
θ∂λφ + 2

β − x

β
c2
θ∂λψ + ∂λξ

))

= 0 . (4.5)

Note that they are trivially satisfied for the linear ansatz we choose.

Furthermore, the Virasoro constraints are given by

ξ̇ξ′ + d1φ̇φ′ + d2ψ̇ψ′ + d3(ψ̇φ′ + ψ′φ̇) +
α − x

α
s2
θ(ξ̇φ

′ + ξ′φ̇) (4.6)

+
β − x

β
c2
θ(ξ̇ψ

′ + ξ′ψ̇) = 0 ,

κ2 = ξ̇2 + ξ′2 + d1(φ̇
2 + φ′2) + d2(ψ̇

2 + ψ′2) + 2d3(ψ̇φ̇ + ψ′φ′) (4.7)

+2
α − x

α
s2
θ(ξ̇φ̇ + ξ′φ′) + 2

β − x

β
c2
θ(ξ̇ψ̇ + ξ′ψ′).

Finally, the conserved charges associated to the three U(1) isometries are

Jξ =

√
λ

2π

∫ 2π

0
dσ

(

ξ̇ +
α − x

α
s2
θφ̇ +

β − x

β
c2
θψ̇

)

, (4.8)

Jφ =

√
λ

2π

∫ 2π

0
dσ

(

α − x

α
s2
θ ξ̇ + d1φ̇ + d3ψ̇

)

, (4.9)

Jψ =

√
λ

2π

∫ 2π

0
dσ

(

β − x

β
c2
θ ξ̇ + d3φ̇ + d2ψ̇

)

, (4.10)

where the classical energy is given by (3.9).
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In the next section we use these equations to find some string solutions on Lp,q,r.

The ansatz for the string motion we consider have a linear dependence with τ and σ

and are the following

ξ = ω1τ + m1σ, φ = ω2τ + m2σ, ψ = ω3τ + m3σ (4.11)

θ = θ0 and x = x0, (4.12)

where θ0, x0 are constants and we are also setting µ = 1.

4.2 One angle solution

It is straight-forward to see that in the coordinate system we chose for the metric, there

are solutions for point-like strings moving on the direction ξ, since the metric element gξξ is

constant. As we also commented in a previous section, a general property of the Virasoro

constraints is that they do not allow any extended spinning string solutions, where the

strings are moving only along one U(1) direction.

We start by considering the trivial case of ξ = ω1τ , where all the equations of motion

and the first Virasoro constraint are satisfied trivially. The conserved momenta are

Jξ =
√

λω1, Jφ =
√

λ
α − x

α
s2
θω1, Jψ =

√
λ

β − x

β
c2
θω1. (4.13)

The second Virasoro constraint gives the energy

E =
√

λ
√

ω2
1 = |Jξ| =

2αβ

4αβ − (α + β)x − (α − β)x c2θ
|Jtot| , (4.14)

which is presented in terms of the momenta. We see that the energy is proportional to the

total spin and the factor of proportionality depends on α, β, and hence on the manifold

Lp,q,r considered.

Now consider a point-like string rotating along φ direction with φ = ω2τ . The first

two equations of motion give

∂θd1(x, θ) = 0 , ∂xd1(x, θ) = 0 . (4.15)

In the region that α, β are defined, the only real solution is when θ = 0, which makes the

gφφ element zero. As a final possibility, consider the string moving according to ψ = ω3τ ,

which has to satisfy the equations

∂θd2(x, θ) = 0 , ∂xd2(x, θ) = 0 . (4.16)

These have a real solution only for θ = π/2 which makes the metric element in the direction

of rotation equal to zero.

For completeness we mention that the corresponding static string ansatze miσ, gives

an acceptable solution only for a wrapping around the α direction, and in this case all the

conserved momenta are zero.
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Figure 6. In the plot are presented the solutions of ∆(x), x1 and x2, together with x (4.19) versus

the manifold parameters α, β. The solution x is plotted with blue and we see that there is no region

such that x is between of x1, x2 where the manifold constraints are satisfied.

4.3 The two angle solutions

In this section we try to sketch a way of finding solutions of strings moving in two Killing

vector directions simultaneously.

We choose to activate the angles ξ, ψ, and initially look for point-like string solutions

ξ = ω1τ, ψ = ω3τ. (4.17)

The equations of motion reduce to

∂θd2 ω3 − 2
β − x

β
s2θ ω1 = 0 , ∂xd2 ω3 − 2

c2
θ

β
ω1 = 0 , (4.18)

where in order to check easier the inequality (2.18), and solve the above equations, it is

convenient to give an appropriate value to angle θ. By choosing θ = π/4 we get a solution

α = β ± 3ω3√
2
√

−βω3(2ω1 + ω3)
, x =

α + 5β

6
. (4.19)

To make sure the solution is real we need to constrain ω3 by

ω1 < 0 and 0 < ω3 < −2ω1 or ω1 > 0 and − 2ω1 < ω3 < 0 . (4.20)

Moreover, using the inequalities between x2, α, and β we can easily see that x2 ≤ (α+5β)/6,

which means that x can only be equal to x2. This seems to be a general feature for these

solutions, since even for θ = π/3, the situation is similar. But for a general angle θ, it

is more difficult to solve the equations of motion and identify this behavior. However, in

the cases mentioned above, the solution x is always strictly greater than x2, and hence not

acceptable (figure 6). There are also other solutions that could give acceptable answers,

but need more extensive analysis.
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To obtain an extended string configuration consider the ansatz

α = ω1τ + m1σ, ψ = ω3τ + m3σ, (4.21)

which gives the following system of equations

∂θd2(−ω2
3 + m2

3) − 2
β − x

β
s2θ(−ω1ω3 + m1m3) = 0 , (4.22)

∂xd2(−ω2
3 + m2

3) −
2

β
c2
θ(−ω1ω3 + m1m3) = 0 , (4.23)

ω1m1 + d2ω3m3 +
β − x

β
c2
θ(ω1m3 + m1ω3) = 0 . (4.24)

For ω1 = m1 and ω3 = m3 reduces to a single equation

1 + d2
ω2

3

ω2
1

+ 2
β − x

β
c2
θ

ω3

ω1
= 0 (4.25)

and the simpler solution is for θ = π/4,

ω1 = −ω3

2
, x =

−2 + αβ2 + β3

2β2
. (4.26)

In order this solution to satisfy the inequalities between α, β, and x, is essential for the

following inequality |α − β| < 2/β2 to be satisfied. However, one can see that the solution

is not acceptable because it is always greater than x2. It is also interesting to examine the

more complicated solutions, and see if they can satisfy (2.18).

Since it is complicated to check analytically if the solutions which involve a general

angle θ satisfy the manifold constraints, we choose not to present them here, and maybe

leave the problem for further investigation in the future. However, we already gave the

basic setup with all the equations, found some pointlike solutions and also show the method

to follow to find new string solutions moving in the U(1) directions of Lp,q,r manifolds.

5 Conclusion

In this paper, we initially examine the string motion on Y p,q along the U(1) directions. To

accept the solutions of the equations of motion and the Virasoro constraints, we must make

sure that they also satisfy the Sasaki-Einstein constraints in a way we described above. Due

to the presence of all these constraints, the number of acceptable string solutions is limited

drastically. Then we show that when the energy is expressed in terms of the conserved

momenta, the factors multiplied with them depend on the manifold, i.e. on the parameter

a, where they are monotonic functions with respect to it. Hence, the extrema of these

functions occur for maximum or minimum values of a. Except this behavior, it seems that

the dispersion relations depend on the parameter a in a transcendental way.

Furthermore, by looking at massless geodesics, we find that there is a unique BPS

solution, which was already known. What we see here is that the string coordinates must

depend linearly with time. Moreover, for this solution, the string can sit anywhere in the
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allowed y interval satisfying (2.5). An other point-like string solution was found which lives

on the two supersymmetric three-submanifolds S3/Zp+q,S
3/Zp+q, obtained by the initial

manifold for y = yq±. However, by considering the boundary conditions, the solution

becomes static, and we argue that there are no other point-like BPS solutions in the

analysis presented above.

One can work similarly in the cohomogeneity two manifolds Lp,q,r, finding some point-

like and classical string solutions. Again, we expect that when the energy is expressed

in terms of the conserved momenta, it does not take the same form uniformly over the

family of manifolds Lp,q,r, and basically the discussion we presented for the Y p,q manifold

remain similar with the Lp,q,r manifold. However, in this case, due to the large number of

parameters, it is more difficult to check analytically in full generality whether or not the

solutions satisfy the manifold constraints. One can certainly try to find some more solutions

for these manifolds. Furthermore, the solutions of Y p,q found in the previous section should

correspond to some solutions in Lp,q,r manifolds. To establish a direct way to correspond

these solutions one possibly needs to make some suitable coordinate transformations.

An interesting extension of this work could be to consider strings having σ dependence

on one of the y, θ angles. By activating simultaneously one more U(1) angle for the string’s

motion, the analysis should not be difficult. However, simultaneous string motion on more

directions, could lead to systems of differential equations that might be difficult to solve.

Also, worth looking at, is the effect of the β deformations on the string solutions on these

manifolds. One can initially work with the point-like BPS solutions presented above, and

try to derive the β deformed ’BPS condition’. It can be checked then if the BPS massless

geodesics found above, remain undeformed. It must be possible to support these results

accordingly in the dual beta deformed theory. Another interesting topic is to examine the

string motion simultaneously in several U(1) directions, and to analyze the energy-spin

relations. Finally, it would be very good to identify the solutions found in this paper with

the corresponding operators in field theory. Some of the above issues will be examined in

a forthcoming publication [37].

A Some formulas of Sasaki-Einstein manifolds

The three roots of cubic satisfy

yq+ + yq− + y3 = 3/2, yq+yq− + yq+y3 + yq−y3 = 0, 2yq+yq−y3 = −a (A.1)

and also can be expressed in terms of p, q

yq± =
1

4p

(

2p ± 3q −
√

4p2 − 3q2
)

, y3 =
1

4p

(

2p + 2
√

4p2 − 3q2
)

(A.2)

and the period of a (2.10), can be rewritten in a more compact form

l = − q

4p2yq+yq−
, (A.3)

which is always positive since yq− is negative. The volume Y p,q is given by

V ol(Y p,q) =
q
(

2p +
√

4p2 − 3q2
)

lπ3

3p2
(A.4)
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and is bounded by

V ol(T 1,1/Zp) > V ol(Y p,q) > V ol(S5/Z2 × Zp). (A.5)

B Definition of functions used in L
p,q,r string solutions

In order to make the presentation shorter we define the following functions as

d1(x, θ) ≡
(

(α − x)2

α2
s2
θ +

∆s2
θ + hc2

θ(α − x)2

ρ2α2

)

s2
θ , (B.1)

d2(x, θ) ≡
(

(β − x)2

β2
c2
θ +

∆c2
θ + hs2

θ(β − x)2

ρ2β2

)

c2
θ , (B.2)

d3(x, θ) ≡
(

(α − x)(β − x) +
∆ − h(α − x)(β − x)

ρ2

)

c2
θs

2
θ

αβ
, (B.3)

which have the following partial derivatives. With respect to θ:

∂θd1(x, θ) =
s2θ

α2(α − β)

(

µ + α(α − β)(α − x) − 4µ(α − x)2

(α + β − 2x + (α − β)c2θ)2

)

,

∂θd2(x, θ) =
s2θ

β2(α − β)

(

µ + β(β − α)(β − x) − 4µ(β − x)2

(α + β − 2x + (α − β)c2θ)2

)

,

∂θd3(x, θ) =
µs2θ

(

(x − αc2
θ)c

2
θ − (x − βs2

θ)s
2
θ

)

αβ
(

−x + αc2
θ + βs2

θ

)2

and with respect to x:

∂xd1(x, θ) = − s2
θ

8α2
(

−x + αc2
θ + bs2

θ

)2

(

4µ + α
(

3α2 + 2αβ + 3β2 − 8(α + β)x + 8x2
)

+

+4(−µ + α(α − β)(α + β − 2x))c2θ + α(α − β)2c4θ

)

, (B.4)

∂xd2(x, θ) = − c2
θ

8β2
(

−x + αc2
θ + βs2

θ

)2

(

4µ + β
(

3α2 + 2αβ + 3β2 − 8(α + β)x + 8x2
)

+

+4(µ + (α − β)β(α + β − 2x))c2θ + (α − β)2βc4θ

)

, (B.5)

∂xd3(x, θ) = − µs2
2θ

4αβ
(

−x + αc2
θ + βs2

θ

)2 .

We use the above expressions to write the equations of motion and the Virasoro constraints

in a more compact form.
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